GRASP: Grammar-based Language Learning

Peter Ljunglof

DART: Centre for Augmentative and Alternative Communication (AAC) and Assistive Technology (AT)
and Sprakbanken, Department of Swedish Language, University of Gothenburg
peter.ljunglof@gu.se

Abstract
We are developing a pedagogical tool to support language learning and training for children with communicative disabilities. The
system has a graphical interface, where the user can move, replace, add, and in other ways modify, words or phrases. The system
keeps the sentence grammatical, by automatically rearranging the words and changing inflection, if necessary. In this way we
hope that the system stimulates the child to explore the possibilities of language.

1. Introduction

In the GRASP! project, financed by Sunnerdahls Hand-
ikappfond, we are developing an interactive system for
Computer Assisted Language Learning (CALL) (Davies,
2010). There are two intended target groups: one is chil-
dren and adults trying to learn another language; another
group is persons with communicative disabilities who are
learning to read and write in their first language.

The idea is that it will work as an interactive textbook,
where the user can read different texts (just as in a tra-
ditional textbook) but also experiment with and modify
the texts. The system will be divided into modules deal-
ing with different linguistic features, e.g., inflection, word
classes, simple phrases and more advanced constructions.
The modules can be used on their own, or can be combined
for more advanced training.

The texts are stored in an internal grammar format
which makes it possible to transform sentences interac-
tively, while still keeping them grammatical. The under-
lying grammar is multilingual, which is useful not only for
second language learning, but also for first language learn-
ing for persons with communicative disorders, since words
and phrases can be interpreted in a symbol language such
as Blissymbolics.

The system has a graphical user interface, where each
word acts a kind of icon that can be clicked, moved, re-
placed, or modified in other ways. When the user moves
a word to a new position, or changes the inflection of a
word, the system automatically rearranges the other words
and changes inflection so that the sentence stays grammat-
ically correct.

2. System description

In this section we describe the final GRASP system, which
is currently under development. Note that all features are
not currently implemented (as of August 2010).

As the basic component we are using Grammatical
Framework (GF) (Ranta, 2009b), a modular and multilin-
gual grammar formalism. On top of this we build the graph-
ical interface which the user interacts with. As a glue be-
tween the grammar and the interface, we implement an API

'GRASP is an acronym for “grammatikbaserad sprakinlirn-
ing” (grammar-based language learning).

for modifying syntax trees using linear constraints and a
tree similarity measure.

2.1 Ready-made texts

The system will contain a number of texts that the user can
read and experiment with. The texts are stored as GF gram-
mars which makes them possible to modify in a grammat-
ical way. Since GF is multilingual, the texts can be lin-
earized in parallel for several languages. This can be useful
for second language learning, as the system can display the
text in the user’s first language in parallel. Multilinguality
is also useful for first language learning, e.g., by displaying
the parallel text in a symbol language such as Blissymbol-
ics.

2.2 Graphical interaction

The words in the example texts are icon-like objects which
can be clicked on, moved around and deleted. If the user
clicks on a word, a context menu appears consisting of sim-
ilar words, such as different inflection forms, or synonyms,
homonyms, etc. When a new word form is selected from
the menu, it replaces the old word, and if necessary, the
nearby words are also modified and rearranged to keep the
sentence grammatical.

The user can move a word to another position in the sen-
tence, and the system will automatically keep the sentence
grammatical by rearranging and change inflection, if neces-
sary. Words can be deleted from the sentence by dragging
them away. The user can also add or replace words by drag-
ging new words into the sentence. All the time, the sentence
will adapt by rearranging and changing inflection.

The system can also be used for exercises and tests, by
turning off the automatic rearrangement and instead show
problematic phrases in another colour. One example exer-
cise could be to turn a given sentence into passive form by
moving words and changing their inflection until the sen-
tence is correct. Multlinguality can also be used for exer-
cises, e.g., to build a correct translation of a sentence by
moving and modifying the translated words.

2.3 Grammar modules

Different grammatical and linguistic constructions are put
in separate grammar modules, which the user him/herself
can choose to train. Several modules can be chosen at the
same time, for training combined phrases. Examples of

constructions that can be put into modules of their own are
prepositional phrases, relative clauses, adjectives, passive
form, word compounds, topicalization, conjunctions, and
infinitive phrases.

2.4 No free text input

The system does not allow the user to enter words, phrases
or sentences from the keyboard. There are several rea-
sons for this, but the main reason is to avoid problems
with words and grammatical constructions that the system
doesn’t know anything about. Systems that are supposed to
handle free text input sooner or later run into problems with
unknown words or phrases (Heift, 2001).

3. Anillustrative example

As an explanatory example, we show how to transform a
sentence in active form (katten jagade inte musen — the cat
didn’t chase the mouse) into passive form (musen jagades
inte av katten — the mouse wasn’t chased by the cat), in two
different ways.

3.1 Moving a word to another position

We start by grabbing a word, in this case the word “musen”
which is in object position:

katten jagade inte]k

While we move the word the sentence remains unaffected,
but the marker gives a hint of where the word can be in-
serted:

| kXten jagade inte
Finally we drop the word in its new subject position, but
the resulting sentence (musen katten jagade inte) is not cor-
rect. Therefore the system rearranges the sentence to the
closest possible grammatical. In this case the sentence is
transformed into passive form:

IS jagades inte av katten

If a topicalization module had been active instead of a pas-
sive form module, the system would have topicalized the
sentence (det var musen som katten inte jagade — it was the
mouse that the cat didn’t chase).

What will not happen is that the mouse becomes the sub-
ject instead of the cat (musen jagade inte katten), since it
involves two changes in the GF syntax tree (changing the
subject and changing the object), whereas passive form or
topicalization only involves one change.

3.2 Choosing verbform in the context menu

Another way of turning the sentence into passive form is to
select from the context menu of the verb:

katten PriELIER [inte
jagar I
¥ jagade

har jagat

musen

jagas

har j;lg:nt>k

Note that the contents of the context menu depends on
which grammar module is active. If the topicalization mod-
ule had been active, the word “musen” would get its context
menu extended with “det var musen” or something similar.

4. Implementation

The system consists of three implementation layers. The
bottom layer is the GF grammar formalism (Ranta, 2009b).
We use GF’s multilingual resource grammar (Ranta, 2009a)
to define the different grammar modules. The example texts
are stored as GF syntax trees, and the GF linearization al-
gorithm is used for displaying the sentences to the user. We
have no use of parsing the sentences, since the syntax trees
are already known and there is no free text input.

On top of GF we have implemented an API for modi-
fying syntax trees by specifying linearization constraints.
The API consists of functions that transform trees to obey
the constraints, by using as few transformations as possi-
ble. An example of constraints can be that the lineariza-
tions of some given tree nodes must come in a certain order
(e.g., when the user moves a word to a position between
two other words). Another example is that the linearization
of a given node must be of a specified form (e.g., when the
user select a specific word form from the context menu).

For the API functions to work, we have defined a similar-
ity measure between GF trees. This is based on the notion
of tree edit distance (Bille, 2005), but with modifications to
ensure type-correctness according to the GF type system.

The final layer is the graphical interface, which commu-
nicates with the API to decide which words can be moved
where, and what their context menus should contain.

5. Discussion

The GRASP system is work in progress, and not all features
described in section 2 are implemented:

The grammar is a monolingual Swedish grammar, and
the module system is not fully developed yet. The grammar
curently handles noun phrase inflection, fronting of noun
phrases, and verb inflection. The graphical interface cannot
yet handle all kinds of interaction, only context-click and
movement; the underlying API however is more mature.

Our plan is to have a working demonstration system by
the end of 2010.

6. References

Philip Bille. 2005. A survey on tree edit distance and re-
lated problems. Theoretical Computer Science, 337(1-
3):217-239.

Graham Davies. 2010. Information and Communications
Technology for Language Teachers (ICT4LT). Accessed
26 aug 2010 from http://www.ict4lt .org/en/.

Trude Heift. 2001. Intelligent language tutoring systems
for grammar practice. Zeitschrift fiir Interkulturellen
Fremdsprachenunterricht, 6(2).

Aarne Ranta. 2009a. The GF resource grammar library.
Linguistic Issues in Language Technology, 2.

Aarne Ranta. 2009b. Grammatical Framework: A multi-
lingual grammar formalism. Language and Linguistics
Compass, 3(5):1242-1265.

